Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 194: 105483, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532314

RESUMO

Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.


Assuntos
Abelhas , Inseticidas , Neonicotinoides , Tiazinas , Animais , Abelhas/genética , Abelhas/metabolismo , Abelhas/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Testes de Toxicidade Subaguda , Testes de Toxicidade Crônica , China , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Estresse Fisiológico/genética
2.
Sci Total Environ ; 885: 163820, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142029

RESUMO

Neonicotinoids are among the most widely used insecticides in the world and are recognized as a potential cause of pollinator decline. Previous studies have demonstrated that the neonicotinoid thiacloprid has adverse effects on foraging and memory behaviors. However, there is no direct evidence linking thiacloprid-induced neuronal cell damage in the brains of honeybees to learning and memory dysfunction. Adult honeybee (Apis mellifera L.) workers were chronically exposed to sub-lethal concentrations of thiacloprid. We discovered that thiacloprid negatively affected their survival, food consumption, and body weight. In addition, sucrose sensitivity and memory performance were impaired. We evaluated the apoptosis of honeybee brain cells using TUNEL (Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling) and Caspase-3 assays, which revealed that thiacloprid increases the dose-dependent apoptosis of neurons in the mushroom bodies (MB) and antennal lobes (AL). We also determined the abnormal transcripts of multiple genes, including vitellogenin (Vg), immune system genes (apidaecin and catalase), and memory-associated genes (pka, creb, Nmdar1, Dop2, Oa1, Oa-2R, and Oa-3R). These results indicate that exposure to sublethal concentrations of thiacloprid cause abnormal expression of memory-related genes and apoptosis of brain cells in the AL and MB, which may contribute to the memory disorder induced by thiacloprid exposure.


Assuntos
Inseticidas , Aprendizagem , Abelhas , Animais , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Apoptose
3.
Front Physiol ; 14: 1150340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057182

RESUMO

The potential toxicity of flupyradifurone (FPF) to honey bees has been a subject of controversy in recent years. Understanding the effect of pesticides on nurse bees is important because the fitness of nurse bees is critical for in-hive activities, such as larval survival and performing hive maintenance. In order to evaluate the acute oral toxicity of flupyradifurone on nurse bees, flupyradifurone at five different concentrations was selected to feed both larvae and nurse bees. Our results showed that nurse bees were more sensitive to flupyradifurone than larvae (LD50 of the acute oral toxicity of flupyradifurone was 17.72 µg a.i./larva and 3.368 µg a.i./nurse bee). In addition, the apoptotic rates of neurons in mushroom bodies of nurse bees were significantly induced by flupyradifurone at sublethal concentrations (8 mg/L, 20 mg/L, and 50 mg/L) and the median lethal concentration LC50 (125 mg/L). The expression of immune-related genes (Hsp90, Toll-8/Tollo, and defensin) was significantly changed in exposed nurse bees at the field-realistic concentration of flupyradifurone. However, three detoxifying enzyme genes (CYP9Q1, -2, and -3) were not affected by pesticide exposure. Our data suggest that although flupyradifurone had a relatively lower acute oral toxicity than many other common pesticides, exposures to the field-realistic and other sublethal concentrations of flupyradifurone still have cytotoxicity and immune-responsive effects on nurse bees. Therefore, flupyradifurone should be considered for its application in crops.

4.
Front Insect Sci ; 2: 844957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468782

RESUMO

Understanding the cause of honey bee (Apis mellifera) population decline has attracted immense attention worldwide in recent years. Exposure to neonicotinoid pesticides is considered one of the most probable factors due to the physiological and behavioral damage they cause to honey bees. However, the influence of thiacloprid, a relatively less toxic cyanogen-substituted form of neonicotinoid, on honey bee (Apis mellifera L.) development is not well studied. The toxicity of sublethal thiacloprid to larvae, pupae, and emerging honey bees was assessed under laboratory conditions. We found that thiacloprid reduced the survival rate of larvae and pupae, and delayed the development of bees which led to lower bodyweight and size. Furthermore, we identified differentially expressed genes involved in metabolism and immunity though RNA-sequencing of newly-emerged adult bees. GO enrichment analysis identified genes involved in metabolism, catalytic activity, and transporter activity. KEGG pathway analysis indicated that thiacloprid induced up-regulation of genes related to glutathione metabolism and Toll-like receptor signaling pathway. Overall, our results suggest that chronic sublethal thiacloprid can affect honey bee colonies by reducing survival and delaying bee development.

5.
Front Microbiol ; 12: 780943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925285

RESUMO

Honeybees (Apis mellifera) can be exposed via numerous potential pathways to ambient nanoparticles (NPs), including rare earth oxide (REO) NPs that are increasingly used and released into the environment. Gut microorganisms are pivotal in mediating honeybee health, but how REO NPs may affect honeybee health and gut microbiota remains poorly understood. To address this knowledge gap, honeybees were fed pollen and sucrose syrup containing 0, 1, 10, 100, and 1000mgkg-1 of nano-La2O3 for 12days. Nano-La2O3 exerted detrimental effects on honeybee physiology, as reflected by dose-dependent adverse effects of nano-La2O3 on survival, pollen consumption, and body weight (p<0.05). Nano-La2O3 caused the dysbiosis of honeybee gut bacterial communities, as evidenced by the change of gut bacterial community composition, the enrichment of pathogenic Serratia and Frischella, and the alteration of digestion-related taxa Bombella (p<0.05). There were significant correlations between honeybee physiological parameters and the relative abundances of pathogenic Serratia and Frischella (p<0.05), underscoring linkages between honeybee health and gut bacterial communities. Taken together, this study demonstrates that nano-La2O3 can cause detrimental effects on honeybee health, potentially by disordering gut bacterial communities. This study thus reveals a previously overlooked effect of nano-La2O3 on the ecologically and economically important honeybee species Apis mellifera.

6.
Insects ; 12(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923512

RESUMO

Flupyradifurone (FPF) is a novel systemic nAChR agonist that interferes with signal transduction in the central nervous system of sucking pests. Despite claims that FPF is potentially "bee-safe" by risk assessments, laboratory data have suggested that FPF has multiple sub-lethal effects on individual honey bees. Our study aimed to expand the studies to the effects of field-realistic concentration of FPF. We found a statistically significant decrease in the survival rate of honey bees exposed to FPF, whereas there were no significantly negative effects on larvae development durations nor foraging activity. In addition, we found that the exposed foragers showed significantly higher expression of ApidNT, CYP9Q2, CYP9Q3, and AmInR-2 compared to the CK group (control group), but no alteration in the gene expression was observed in larvae. The exposed newly emerged bees showed significantly higher expression of Defensin and ApidNT. These results indicate that the chronic exposure to the field-realistic concentration of FPF has negligible effects, but more important synergistic and behavioral effects that can affect colony fitness should be explored in the future, considering the wide use of FPF on crops pollinated and visited by honey bees.

7.
Sci Rep ; 11(1): 2115, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483522

RESUMO

Glyphosate, the active ingredient of the most widely used commercial herbicide formulation, is extensively used and produced in China. Previous studies have reported sublethal effects of glyphosate on honeybees. However, the effects of commercially formulated glyphosate (CFG) at the recommended concentration (RC) on the chronic toxicity of honeybees, especially on their behaviours, remain unknown. In this study, a series of behavioural experiments were conducted to investigate the effects of CFG on honeybees. The results showed that there was a significant decline in water responsiveness at 1/2 × , 1 × and 2 × the RC after 3 h of exposure to CFG for 11 days. The CFG significantly reduced sucrose responsiveness at 1/2 × and 1 × the RC. In addition, CFG significantly affected olfactory learning ability at 1/2 × , 1 × , and 2 × the RC and negatively affected memory ability at 1/2 × and 1 × the RC. The climbing ability of honeybees also significantly decreased at 1/2 × , 1 × and 2 × the RC. Our findings indicated that, after they were chronically exposed to CFG at the RC, honeybees exhibited behavioural changes. These results provide a theoretical basis for regulating field applications of CFG, which is necessary for establishing an early warning and notification system and for protecting honeybees.


Assuntos
Abelhas/fisiologia , Glicina/análogos & derivados , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Glicina/farmacologia , Herbicidas/farmacologia , Glifosato
8.
Ecotoxicol Environ Saf ; 207: 111268, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916533

RESUMO

Foraging is essential for honey bee colony fitness and is enhanced by the waggle dance, a recruitment behavior in which bees can communicate food location and quality. We tested if the consumption of nectar (sucrose solution) with a field-realistic concentration of 4 ppm flupyradifurone (FPF) could alter foraging behavior and recruitment dancing in Apis mellifera. Foragers were repelled by FPF. They visited the FPF feeder less often and spent less time imbibing sucrose solution (2.5 M, 65% w/w) with FPF. As a result, bees feeding on the FPF treatment consumed 16% less nectar. However, FPF did not affect dancing: there were no effects on unloading wait time, the number of dance bouts per nest visit, or the number of dance circuits performed per dance bout. FPF could therefore deter bees from foraging on contaminated nectar. However, the willingness of bees to recruit nestmates for nectar with FPF is concerning. Recruitment can rapidly amplify the number of foragers and could overcome the decrease in consumption of FPF-contaminated nectar, resulting in a net inflow of pesticide to the colony. FPF also significantly altered the expression of 116 genes, some of which may be relevant for the olfactory learning deficits induced by FPF and the toxicity of FPF.


Assuntos
4-Butirolactona/análogos & derivados , Abelhas/fisiologia , Inseticidas/toxicidade , Néctar de Plantas , Piridinas/toxicidade , 4-Butirolactona/toxicidade , Animais , Abelhas/efeitos dos fármacos , Comportamento Alimentar , Alimentos , Sacarose
9.
Insects ; 11(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153109

RESUMO

Asian honey bee (Apis cerana) is the most important Chinese indigenous species, while its toxicological characteristic against neonicotinoids is poorly known. Here, we combined physiological experiments with a genome-wide transcriptome analysis to understand the molecular basis of genetic variation that responds to sublethal imidacloprid at different exposure durations in A. cerana. We found that LC5 dose of imidacloprid had a negative impact on climbing ability and sucrose responsiveness in A. cerana. When bees were fed with LC5 dose of imidacloprid, the enzyme activities of P450 and CarE were decreased, while the GSTs activity was not influenced by the pesticide exposure. The dynamic transcriptomic profiles of A. cerana workers exposed to LC5 dose of imidacloprid for 1 h, 8 h, and 16 h were obtained by high-throughput RNA-sequencing. We performed the expression patterns of differentially expressed genes (DEGs) through trend analysis, and conducted the gene ontology analysis and KEGG pathway enrichment analysis with DEGs in up- and down-regulated pattern profiles. We observed that more genes involved in metabolism, catalytic activity, and structural molecule activity are down-regulated; while more up-regulated genes were enriched in terms associated with response to stimulus, transporter activity, and signal transducer activity. Additionally, genes related to the phenylalanine metabolism pathway, FoxO signaling pathway, and mTOR signaling pathway as indicated in the KEGG analysis were significantly up-related in the exposed bees. Our findings provide a comprehensive understanding of Asian honey bee in response to neonicotinoids sublethal toxicity, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.

10.
J Hazard Mater ; 389: 121818, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31818660

RESUMO

Honeybees (Apis mellifera) offer ecosystem services such as pollination, conservation of biodiversity, and provision of food. However, in recent years, the number of honeybee colonies is diminishing rapidly, which is probably linked to the wide use of neonicotinoid insecticides. Middle-aged honeybees were fed with 50% (w/v) sucrose solution containing 0, 0.2, 0.6, and 2.0 mg/L thiacloprid (a neonicotinoid insecticide) for up to 13 days, and on each day of exposure experiment, percentage survival, sucrose consumption, and bodyweight of honeybees were measured. Further, changes in honeybee gut microbial community were examined using next-generation 16S rDNA amplicon sequencing on day 1, 7, and 13 of the exposure. When compared to control-treatment, continuous exposure to high (0.6 mg/L) and very high (2.0 mg/L) concentrations of thiacloprid significantly reduced percentage survival of honeybees (p < 0.001) and led to dysbiosis of their gut microbial community on day 7 of the exposure. However, during subsequent developmental stages of middle-aged honeybees (i.e. on day 13), their gut microbiome recovered from dysbiosis that occurred previously due to thiacloprid exposure. Taken together, improper application of thiacloprid can cause loss of honeybee colonies, while the microbial gut community of honeybee is an independent variable in this process.


Assuntos
Abelhas/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Animais , Abelhas/crescimento & desenvolvimento , Ecossistema
11.
Sci Rep ; 7(1): 15943, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162882

RESUMO

A sublethal concentration of imidacloprid can cause chronic toxicity in bees and can impact the behavior of honey bees. The nectar- and water-collecting, and climbing abilities of bees are crucial to the survival of the bees and the execution of responsibilities in bee colonies. Besides behavioral impact, data on the molecular mechanisms underlying the toxicity of imidacloprid, especially by the way of RNA-seq at the transcriptomic level, are limited. We treated Apis mellifera L. with sublethal concentrations of imidacloprid (0.1, 1 and 10 ppb) and determined the effect on behaviors and the transcriptomic changes. The sublethal concentrations of imidacloprid had a limited impact on the survival and syrup consumption of bees, but caused a significant increase in water consumption. Moreover, the climbing ability was significantly impaired by 10 ppb imidacloprid at 8 d. In the RNA-seq analysis, gene ontology (GO) term enrichment indicated a significant down-regulation of muscle-related genes, which might contribute to the impairment in climbing ability of bees. The enriched GO terms were attributed to the up-regulated ribosomal protein genes. Considering the ribosomal and extra-ribosomal functions of the ribosomal proteins, we hypothesized that imidacloprid also causes cell dysfunction. Our findings further enhance the understanding of imidacloprid sublethal toxicity.


Assuntos
Abelhas/genética , Genes de Insetos , Músculos/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Proteínas Ribossômicas/genética , Animais , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ingestão de Líquidos , Comportamento Alimentar , Ontologia Genética , Locomoção/efeitos dos fármacos , Reprodutibilidade dos Testes , Proteínas Ribossômicas/metabolismo , Análise de Sobrevida , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos
12.
Sci Rep ; 7: 41688, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139751

RESUMO

Cry1Ie protein derived from Bacillus thuringiensis (Bt) has been proposed as a promising candidate for the development of a new Bt-maize variety to control maize pests in China. We studied the response of the midgut bacterial community of Apis cerana cerana to Cry1Ie toxin under laboratory conditions. Newly emerged bees were fed one of the following treatments for 15 and 30 days: three concentrations of Cry1Ie toxin (20 ng/mL, 200 ng/mL, and 20 µg/mL) in sugar syrup, pure sugar syrup as a negative control and 48 ng/mL imidacloprid as a positive control. The relative abundance of 16S rRNA genes was measured by Quantitative Polymerase Chain Reaction and no apparent differences were found among treatments for any of these counts at any time point. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial genera such as Lactobacillus, Bifidobacterium, Snodgrassella, and Gilliamella were detected, and no significant changes were found in the species diversity and richness for any bacterial taxa among treatments at different time points. These results suggest that Cry1Ie toxin may not affect gut bacterial communities of Chinese honey bees.


Assuntos
Toxinas Bacterianas/farmacologia , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Biodiversidade , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Bacillus thuringiensis , Análise por Conglomerados , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S/genética
13.
Ying Yong Sheng Tai Xue Bao ; 28(6): 2055-2062, 2017 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-29745171

RESUMO

Varroa destructor is a virulent ectoparasitic mite of western honeybee (Apis mellifera), and considered the greatest threat to apiculture around the world. Chemical method is widely used for the management of this mite. However, this method can easily induce the resistance of V. destructor to acaricides, toxicity of acaricides to honeybee and the residues in bee products. Therefore, many safe preventions and control techniques were developed to treat mite in recent years. Using pheromones of honeybee to control V. destructor would be a main tendency. A lot of studies indicated that Varroa mites are able to use honeybee pheromones to distinguish the development stages of the hosts, and show high selectivity for appropriate hosts at a special stage. In recent years, a lot of honey bee pheromones were reported to have effect on V. destructor, including pheromones from adult honeybee, pupa and brood. Some of them have repellent effect on V. destructor, while others have attractant effect on V. destructor. This article reviewed the progresses in pheromones categories, major chemical compositions, and their effects to V. destructor, which would suggest important avenues for further researches and applications in mite control.


Assuntos
Abelhas , Feromônios , Varroidae , Acaricidas , Animais , Pupa
14.
J Econ Entomol ; 109(6): 2259-2263, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27670271

RESUMO

The cry1Ie gene may be a good candidate for the development of Bt maize because over-expression of Cry1Ie is highly toxic to Lepidopteran pests such as Heliothis armigera Hübner and Ostrinia furnacalis Guenée. The Bt cry1Ie gene also has no cross resistance with other insecticidal proteins such as Cry1Ab, Cry1Ac, Cry1Ah, or Cry1F. Chinese honey bees (Apis cerana cerana) are potentially exposed to insect-resistant genetically modified (IRGM) crops expressing Cry1Ie toxin via the collection of IRGM crop pollen. In this study, we tested whether Chinese honey bee workers are negatively affected by sugar syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin and 48 ng/ml imidacloprid under controlled laboratory conditions. Our results demonstrated that the Cry1Ie toxin does not adversely impact survival and pollen consumption of Chinese honey bees. However, imidacloprid decreases Chinese honey bee survival and the total pollen consumption on the 5th, 6th, and 18th d of exposure. The described bioassay is suitable to assess the effects of GM expressed toxins against honey bee.


Assuntos
Proteínas de Bactérias/toxicidade , Abelhas/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Pólen , Animais , Toxinas de Bacillus thuringiensis , Abelhas/fisiologia , Dieta , Comportamento Alimentar/efeitos dos fármacos , Imidazóis/toxicidade , Longevidade/efeitos dos fármacos , Neonicotinoides , Nitrocompostos/toxicidade
15.
J Econ Entomol ; 109(3): 1028-1033, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122497

RESUMO

The honey bee ( Apis mellifera L.) is a key nontarget insect in environmental risk assessments of insect-resistant genetically modified crops. In controlled laboratory conditions, we evaluated the potential effects of Cry1Ie toxin on survival, pollen consumption, and olfactory learning of young adult honey bees. We exposed worker bees to syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin, and also exposed some bees to 48 ng/ml imidacloprid as a positive control for exposure to a sublethal concentration of a toxic product. Results suggested that Cry1Ie toxin carries no risk to survival, pollen consumption, or learning capabilities of young adult honey bees. However, during oral exposure to the imidacloprid treatments, honey bee learning behavior was affected and bees consumed significantly less pollen than the control and Cry1Ie groups.

16.
Sci Rep ; 6: 24664, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090812

RESUMO

The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 µg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3-V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize.


Assuntos
Bacillus thuringiensis/metabolismo , Bactérias/classificação , Toxinas Bacterianas/toxicidade , Abelhas/microbiologia , Intestinos/microbiologia , Animais , Bactérias/genética , Biodiversidade , Plantas Geneticamente Modificadas , Polinização , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...